Exercise 2.3.11

Solve the heat equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

subject to the following conditions:

$$
u(0, t)=0 \quad u(L, t)=0 \quad u(x, 0)=f(x) .
$$

What happens as $t \rightarrow \infty$? [Hints:

1. It is known that if $u(x, t)=\phi(x) G(t)$, then $\frac{1}{k G} \frac{d G}{d t}=\frac{1}{\phi} \frac{d^{2} \phi}{d x^{2}}$.
2. Use formula sheet.]

Solution

The heat equation and its associated boundary conditions are linear and homogeneous, so the method of separation of variables can be applied. Assume a product solution of the form $u(x, t)=X(x) T(t)$ and substitute it into the PDE

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad \rightarrow \quad \frac{\partial}{\partial t}[X(x) T(t)]=k \frac{\partial^{2}}{\partial x^{2}}[X(x) T(t)]
$$

and the boundary conditions.

$$
\begin{array}{rllll}
u(0, t)=0 & \rightarrow & X(0) T(t)=0 & & \rightarrow \\
u(L, t)=0 & \rightarrow & X(L) T(t)=0 & & \rightarrow
\end{array}
$$

Now separate variables in the PDE.

$$
X \frac{d T}{d t}=k T \frac{d^{2} X}{d x^{2}}
$$

Divide both sides by $k X(x) T(t)$. (Note that the final answer for u will be the same regardless which side k is on. Normally constants are grouped with t.)

$$
\underbrace{\frac{1}{k T} \frac{d T}{d t}}_{\text {function of } t}=\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{\text {function of } x}
$$

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

$$
\frac{1}{k T} \frac{d T}{d t}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in t.

$$
\left.\begin{array}{l}
\frac{1}{k T} \frac{d T}{d t}=\lambda \\
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\lambda
\end{array}\right\}
$$

Values of λ that result in nontrivial solutions for X and T are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\alpha^{2} X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{1} \cosh \alpha x+C_{2} \sinh \alpha x
$$

Apply the boundary conditions now to determine C_{1} and C_{2}.

$$
\begin{aligned}
& X(0)=C_{1}=0 \\
& X(L)=C_{1} \cosh \alpha L+C_{2} \sinh \alpha L=0
\end{aligned}
$$

The second equation reduces to $C_{2} \sinh \alpha L=0$. Because hyperbolic sine is not oscillatory, C_{2} must be zero for the equation to be satisfied. This results in the trivial solution $X(x)=0$, which means there are no positive eigenvalues. Suppose secondly that λ is zero: $\lambda=0$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=0
$$

The general solution is obtained by integrating both sides with respect to x twice.

$$
X(x)=C_{3} x+C_{4}
$$

Apply the boundary conditions now to determine C_{3} and C_{4}.

$$
\begin{aligned}
& X(0)=C_{4}=0 \\
& X(L)=C_{3} L+C_{4}=0
\end{aligned}
$$

The second equation reduces to $C_{3}=0$. This results in the trivial solution $X(x)=0$, which means zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=-\beta^{2} X
$$

The general solution is written in terms of sine and cosine.

$$
X(x)=C_{5} \cos \beta x+C_{6} \sin \beta x
$$

Apply the boundary conditions now to determine C_{5} and C_{6}.

$$
\begin{aligned}
& X(0)=C_{5}=0 \\
& X(L)=C_{5} \cos \beta L+C_{6} \sin \beta L=0
\end{aligned}
$$

The second equation reduces to $C_{6} \sin \beta L=0$. To avoid the trivial solution, we insist that $C_{6} \neq 0$. Then

$$
\begin{aligned}
\sin \beta L & =0 \\
\beta L & =n \pi, \quad n=1,2, \ldots \\
\beta_{n} & =\frac{n \pi}{L} .
\end{aligned}
$$

There are negative eigenvalues $\lambda=-n^{2} \pi^{2} / L^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
X(x) & =C_{5} \cos \beta x+C_{6} \sin \beta x \\
& =C_{6} \sin \beta x \quad \rightarrow \quad X_{n}(x)=\sin \frac{n \pi x}{L} .
\end{aligned}
$$

n only takes on the values it does because negative integers result in redundant values for λ. With this formula for λ, the ODE for T becomes

$$
\frac{1}{k T} \frac{d T}{d t}=-\frac{n^{2} \pi^{2}}{L^{2}}
$$

Multiply both sides by $k T$.

$$
\frac{d T}{d t}=-\frac{k n^{2} \pi^{2}}{L^{2}} T
$$

The general solution is written in terms of the exponential function.

$$
T(t)=C_{7} \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \quad \rightarrow \quad T_{n}(t)=\exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X_{n}(x) T_{n}(t)$ for each of the eigenvalues.

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

Apply the initial condition $u(x, 0)=f(x)$ now to determine B_{n}.

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}=f(x)
$$

Multiply both sides by $\sin (m \pi x / L)$, where m is a positive integer.

$$
\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L}=f(x) \sin \frac{m \pi x}{L}
$$

Integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L} \sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x
$$

Bring the constants in front.

$$
\sum_{n=1}^{\infty} B_{n} \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x
$$

Because the sine functions are orthogonal, the integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the one where $n=m$.

$$
B_{n} \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Evaluate the integral on the left.

$$
B_{n}\left(\frac{L}{2}\right)=\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

So then

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Because of the decaying exponential function, u falls to zero as $t \rightarrow \infty$.

$$
\begin{aligned}
\lim _{t \rightarrow \infty} u(x, t) & =\lim _{t \rightarrow \infty} \sum_{n=1}^{\infty} B_{n} \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L} \\
& =0
\end{aligned}
$$

